3.6.53 \(\int \frac {(e x)^{3/2} (A+B x^3)}{(a+b x^3)^{3/2}} \, dx\) [553]

Optimal. Leaf size=553 \[ \frac {2 (A b-a B) (e x)^{5/2}}{3 a b e \sqrt {a+b x^3}}-\frac {\left (1+\sqrt {3}\right ) (2 A b-5 a B) e \sqrt {e x} \sqrt {a+b x^3}}{3 a b^{5/3} \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )}+\frac {(2 A b-5 a B) e \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{3^{3/4} a^{2/3} b^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {\left (1-\sqrt {3}\right ) (2 A b-5 a B) e \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{6 \sqrt [4]{3} a^{2/3} b^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

2/3*(A*b-B*a)*(e*x)^(5/2)/a/b/e/(b*x^3+a)^(1/2)-1/3*(2*A*b-5*B*a)*e*(1+3^(1/2))*(e*x)^(1/2)*(b*x^3+a)^(1/2)/a/
b^(5/3)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))+1/3*(2*A*b-5*B*a)*e*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)
))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*
EllipticE((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2
))*(e*x)^(1/2)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)*3^(1/4)/a^(2/
3)/b^(5/3)/(b*x^3+a)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)+1/18*(2*A*b
-5*B*a)*e*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(
1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^
(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(1-3^(1/2))*(e*x)^(1/2)*((a^(2/3)-a^(1/3)*b^(1/
3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/a^(2/3)/b^(5/3)/(b*x^3+a)^(1/2)/(b^(1/3)*x*
(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.38, antiderivative size = 553, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {468, 335, 314, 231, 1895} \begin {gather*} \frac {\left (1-\sqrt {3}\right ) e \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} (2 A b-5 a B) F\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{6 \sqrt [4]{3} a^{2/3} b^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {e \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} (2 A b-5 a B) E\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{3^{3/4} a^{2/3} b^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {\left (1+\sqrt {3}\right ) e \sqrt {e x} \sqrt {a+b x^3} (2 A b-5 a B)}{3 a b^{5/3} \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )}+\frac {2 (e x)^{5/2} (A b-a B)}{3 a b e \sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((e*x)^(3/2)*(A + B*x^3))/(a + b*x^3)^(3/2),x]

[Out]

(2*(A*b - a*B)*(e*x)^(5/2))/(3*a*b*e*Sqrt[a + b*x^3]) - ((1 + Sqrt[3])*(2*A*b - 5*a*B)*e*Sqrt[e*x]*Sqrt[a + b*
x^3])/(3*a*b^(5/3)*(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)) + ((2*A*b - 5*a*B)*e*Sqrt[e*x]*(a^(1/3) + b^(1/3)*x)*S
qrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticE[ArcCos[(a^(1/
3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(3^(3/4)*a^(2/3)*b^(5/3)
*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a + b*x^3]) + ((1 - Sqrt[3
])*(2*A*b - 5*a*B)*e*Sqrt[e*x]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3)
 + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b
^(1/3)*x)], (2 + Sqrt[3])/4])/(6*3^(1/4)*a^(2/3)*b^(5/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1
+ Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a + b*x^3])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 314

Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(
Sqrt[3] - 1)*(s^2/(2*r^2)), Int[1/Sqrt[a + b*x^6], x], x] - Dist[1/(2*r^2), Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4
)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d
))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*n*(p + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a
*b*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0]
 && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0]
&& LeQ[-1, m, (-n)*(p + 1)]))

Rule 1895

Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]

Rubi steps

\begin {align*} \int \frac {(e x)^{3/2} \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx &=\frac {2 (A b-a B) (e x)^{5/2}}{3 a b e \sqrt {a+b x^3}}+\frac {\left (2 \left (-A b+\frac {5 a B}{2}\right )\right ) \int \frac {(e x)^{3/2}}{\sqrt {a+b x^3}} \, dx}{3 a b}\\ &=\frac {2 (A b-a B) (e x)^{5/2}}{3 a b e \sqrt {a+b x^3}}-\frac {(2 (2 A b-5 a B)) \text {Subst}\left (\int \frac {x^4}{\sqrt {a+\frac {b x^6}{e^3}}} \, dx,x,\sqrt {e x}\right )}{3 a b e}\\ &=\frac {2 (A b-a B) (e x)^{5/2}}{3 a b e \sqrt {a+b x^3}}+\frac {(2 A b-5 a B) \text {Subst}\left (\int \frac {\left (-1+\sqrt {3}\right ) a^{2/3} e^2-2 b^{2/3} x^4}{\sqrt {a+\frac {b x^6}{e^3}}} \, dx,x,\sqrt {e x}\right )}{3 a b^{5/3} e}+\frac {\left (\left (1-\sqrt {3}\right ) (2 A b-5 a B) e\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^6}{e^3}}} \, dx,x,\sqrt {e x}\right )}{3 \sqrt [3]{a} b^{5/3}}\\ &=\frac {2 (A b-a B) (e x)^{5/2}}{3 a b e \sqrt {a+b x^3}}-\frac {\left (1+\sqrt {3}\right ) (2 A b-5 a B) e \sqrt {e x} \sqrt {a+b x^3}}{3 a b^{5/3} \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )}+\frac {(2 A b-5 a B) e \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{3^{3/4} a^{2/3} b^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {\left (1-\sqrt {3}\right ) (2 A b-5 a B) e \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{6 \sqrt [4]{3} a^{2/3} b^{5/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.08, size = 77, normalized size = 0.14 \begin {gather*} \frac {x (e x)^{3/2} \left (5 a B+(2 A b-5 a B) \sqrt {1+\frac {b x^3}{a}} \, _2F_1\left (\frac {5}{6},\frac {3}{2};\frac {11}{6};-\frac {b x^3}{a}\right )\right )}{5 a b \sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^(3/2)*(A + B*x^3))/(a + b*x^3)^(3/2),x]

[Out]

(x*(e*x)^(3/2)*(5*a*B + (2*A*b - 5*a*B)*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[5/6, 3/2, 11/6, -((b*x^3)/a)]))/
(5*a*b*Sqrt[a + b*x^3])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.32, size = 5392, normalized size = 9.75

method result size
elliptic \(\text {Expression too large to display}\) \(1154\)
default \(\text {Expression too large to display}\) \(5392\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(3/2)*(B*x^3+A)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(3/2)*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

e^(3/2)*integrate((B*x^3 + A)*x^(3/2)/(b*x^3 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(3/2)*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

integral((B*x^4 + A*x)*sqrt(b*x^3 + a)*sqrt(x)*e^(3/2)/(b^2*x^6 + 2*a*b*x^3 + a^2), x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 76.93, size = 94, normalized size = 0.17 \begin {gather*} \frac {A e^{\frac {3}{2}} x^{\frac {5}{2}} \Gamma \left (\frac {5}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{6}, \frac {3}{2} \\ \frac {11}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {11}{6}\right )} + \frac {B e^{\frac {3}{2}} x^{\frac {11}{2}} \Gamma \left (\frac {11}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {11}{6} \\ \frac {17}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {17}{6}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(3/2)*(B*x**3+A)/(b*x**3+a)**(3/2),x)

[Out]

A*e**(3/2)*x**(5/2)*gamma(5/6)*hyper((5/6, 3/2), (11/6,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(11/6)) +
 B*e**(3/2)*x**(11/2)*gamma(11/6)*hyper((3/2, 11/6), (17/6,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(17/6
))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(3/2)*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^3 + A)*x^(3/2)*e^(3/2)/(b*x^3 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (B\,x^3+A\right )\,{\left (e\,x\right )}^{3/2}}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x^3)*(e*x)^(3/2))/(a + b*x^3)^(3/2),x)

[Out]

int(((A + B*x^3)*(e*x)^(3/2))/(a + b*x^3)^(3/2), x)

________________________________________________________________________________________